skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lin, Lap-Ming"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We show that a minimum-mass neutron star undergoes delayed explosion after mass removal from its surface. We couple the Newtonian hydrodynamics to a nuclear reaction network of ∼4500 isotopes to study the nucleosynthesis and neutrino emission during the explosion. An electron antineutrino burst with a peak luminosity of ∼3 × 1050erg s−1is emitted while the ejecta is heated to ∼109K. A robustr-process nucleosynthesis is realized in the ejecta. Lanthanides and heavy elements near the second and thirdr-process peaks are synthesized as end products of nucleosynthesis, suggesting that subminimal neutron star explosions could be an important source of solar chemical elements. 
    more » « less